If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2-39x=0
a = 13; b = -39; c = 0;
Δ = b2-4ac
Δ = -392-4·13·0
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-39}{2*13}=\frac{0}{26} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+39}{2*13}=\frac{78}{26} =3 $
| 4x+32+67=82 | | y,5-9=11 | | x-3.75=-4.5 | | 1/6x+7=-4 | | 5^(x^2)-2x=125 | | S-1.7x=6 | | 2x+15=-1x-15 | | X+5.5+8=5x-11.5-4x | | 8-x/5=2 | | 2.5f=17.5 | | 2/3(18x+9)=48 | | 4+x/5=13 | | x/3+30=180 | | 63=x/6 | | n÷4=19 | | 4x+26=360 | | 5f+14=1f-6 | | 4k-8=9k-15 | | 4−2(x−1)=12 | | 2x+x+5x-0=-6+9x-x+3 | | (4x-22)-(10x-4)-(x-11)=180 | | 2x+2/3=3x+18/6 | | 5(x+3)+3=-2(x-10)-10 | | (4x-22)+(10x-4)+(x-11)=180 | | -5.6=h,5+12.2 | | 3x+26=360 | | 4x+9-3x+3=33 | | 9d+4-2d=32d= | | 13x-12=3x+38 | | 3x+44=360 | | 3h+5h−15=17 | | 22b=88 |